あらきけいすけのメモ帳

あらきけいすけの雑記帳2

e関連の極限の式を避けて対数関数と指数関数を微分する

 授業のための覚書。高校の数学IIIの合成関数の微分の知識を用いる。数学IIIの知識が一通りあれば、論理で押し切れそう。

 対数関数は対数法則 f(xy)=f(x)+f(y) を満たす可微分な関数なので、合成関数の導関数の公式を使い、この両辺を y微分して xf'(xy)=f'(y) となる。これに y=1 を代入して xf'(x)=f'(1) となる。ゆえに \displaystyle f'(x)=\frac{f'(1)}{x} である。ここで f'(1)=1 となる特別な対数関数を「自然対数」と呼び、 \ln x と表記することにすると、自然対数の導関数\displaystyle (\ln x)'=\frac{1}{x} となる(ところで対数の底の値は?)。

 自然対数の逆関数となる指数関数*1y=f^{-1}(x))の導関数\ln y=x の両辺を x について微分することで y'=y と分かる。この指数関数を便宜的に f^{-1}(x)=e^x と表記することにすると、(e^x)'=e^x となる。

 対数法則に x=y=1 を代入して f(1)=0 となること、x\gt0 のとき x^{-1}\gt0 を使って、対数関数の x での値は定積分 \displaystyle \ln x=\int_1^x\frac{dt}{t} で定義される数である。この定義が破綻しないためには \ln x の定義域を x\gt0 にしないといけない。

 対数の底の具体的な値は \displaystyle\int_1^e\frac{dx}{x}=1 を満たす1より大きい数 e数値計算で求めればよい(よい精度で求められるアルゴリズムがあればよいのだが、ボクは知らない)。

 自然対数以外の底の対数関数は\displaystyle f(x)=f'(1)\int_1^x\frac{dt}{t}=f'(1)\ln xで与えらえる。ここでこの対数関数の底をaとするとf(a)=f'(1)\ln a=1となるので、\displaystyle f'(1)=\frac{1}{\ln a}となる。これよりこの対数関数を\log_aと書くと、\displaystyle\log_ax=\frac{\ln x}{\ln a}となる。これは底の変換の式になっている。これより\displaystyle(\log_ax)'=\frac{1}{x\ln a}となる。

*1:f(x)=X, f(y)=Y と置くと、対数法則の式を指数法則の式 f^{-1}(X)f^{-1}(Y)=f^{-1}(X+Y) に書き換えることができる。